Node Similarity, Graph Similarity and Matching: Theory and Applications

Danai Koutra (CMU)
Tina Eliassi-Rad (Rutgers)
Christos Faloutsos (CMU)

SDM 2014, Friday April 25th 2014, Philadelphia, PA

Who we are

- Danai Koutra, CMU
- Node and graph similarity, summarization, pattern mining
- http://www.cs.cmu.edu/~dkoutra/

- Tina Eliassi-Rad, Rutgers
- Data mining, machine learning, big complex networks analysis
- http://eliassi.org/
- Christos Faloutsos, CMU
- Graph and stream mining, ...
- http://www.cs.cmu.edu/~christos

What we will cover

What we will cover

School of Computer Science
Dept. of Computer Science
Rutgers

Part 1a

Similarity between Nodes: Roles

Roadmap

- Node Roles
- What are roles
- Roles and communities

- Roles and equivalences (from sociology)
- Roles (from data mining)
- Summary
- Node Proximity

What are roles?

- "Functions" of nodes in the network
- Similar to functional roles of species in ecosystems
- Measured by structural behaviors
- Examples
- centers of stars
- members of cliques
- peripheral nodes
- ...

Example of Roles

Network Science Co-authorship Graph
[Newman 2006]

Why are the roles important?

Task	Use Case
Role query	Identify individuals with similar behavior to a known target
Role outliers	Identify individuals with unusual behavior
Role dynamics	Identify unusual changes in behavior
Identity resolution	Identify known individuals in a new network
Role transfer	Use knowledge of one network to make predictions in another
Network comparison	Determine network compatibility for knowledge transfer
D. Koutra \& T. Eliassi-Rad \& C. Faloutsos	

Roadmap

- Node Roles
- What are roles
- Roles and communities

- Roles and equivalences (from sociology)
- Roles (from data mining)
- Summary
- Node Proximity

Roles and Communities are Complementary

Roles

Communities

*Henderson, et al. 2012; ${ }^{\dagger}$ Clauset, et al. 2004

Roles and Communities

Consider the social network of a CS dept

- Roles
- Faculty
- Staff
- Students

- Communities
- Al lab
- Database lab
- Architecture lab
-..

Roadmap

- Node Roles
- What are roles
- Roles and communities

- Roles and equivalences (from sociology)
- Roles (from data mining)
- Summary
- Node Proximity

Equivalences

- Equivalence is any relation that satisfies these 3 conditions:

1. Transitivity: $(\mathrm{a}, \mathrm{b}),(\mathrm{b}, \mathrm{c}) \in \mathrm{E} \Rightarrow(\mathrm{a}, \mathrm{c}) \in \mathrm{E}$
2. Symmetry: $(\mathrm{a}, \mathrm{b}) \in \mathrm{E}$ iff $(\mathrm{b}, \mathrm{a}) \in \mathrm{E}$
3. Reflexivity: $(\mathrm{a}, \mathrm{a}) \in \mathrm{E}$

Roles are referred to as "positions" in sociology.

Equivalences

Deterministic Equivalences

Regular

Structural Equivalence

- [Lorrain \& White, 1971]
- Two nodes u and v are structurally equivalent if they have the same relationships to all other nodes
- Hypothesis: Structurally equivalent nodes are likely to be similar in other ways - i.e., you are your friend
- Weights $\&$ timing issues are not considered
- Rarely appears in real-world networks

Structural Equivalence: Algorithms

- CONCOR (CONvergence of iterated CORrelations) [Breiger et al. 1975]
- STRUCUTRE [Burt 1976]
- Combinatorial optimization approaches
- Numerical optimization with tabu search [UCINET]
- Local optimization [Pajek]
- Partition the sociomatrices into blocks based on a cost function that minimizes the sum of within block variances
- Basically, minimize the sum of code cost within each block

Cross-Associations (XA)

- [Chakrabarti+, KDD 2004]
- Minimize total encoding cost of the adjacency matrix

Binary Matrix

(a) before

(b) after

Deterministic Equivalences

Regular

Automorphic Equivalence

- [Borgatti, et al. 1992; Sparrow 1993]
- Two nodes u and v are automorphically equivalent if all the nodes can be relabeled to form an isomorphic graph with the labels of u and v interchanged
- Swapping u and v (possibly along with their neighbors) does not change graph distances
- Two nodes that are automorphically equivalent share exactly the same label-independent properties

Automorphic Equivalence: Algorithms

- Sparrow (1993) proposed an algorithm that scales linearly to the number of edges
- Use numerical signatures on degree sequences of neighborhoods
- Numerical signatures use a unique transcendental number like π, which is independent of any permutation of nodes
- Suppose node i has the following degree sequence: $1,1,5$, 6 , and 9 . Then its signature is

$$
S_{i, 1}=(1+\pi)(1+\pi)(5+\pi)(6+\pi)(9+\pi)
$$

- The signature for node i at $k+1$ hops is $S_{i,(k+1)}=\Pi\left(S_{i, k}+\pi\right)$
- To find automorphic equivalence, simply compare numerical signatures of nodes

Deterministic Equivalences

Regular Equivalence

- [Everett \& Borgatti, 1992]
- Two nodes u and v are regularly equivalent if they are equally related to equivalent others

President Motes

Faculty

Graduate Students California, Riverside (published in digital form at http://faculty.ucr.edu/~hanneman/)

Regular Equivalence (cont'd)

- Basic roles of nodes
- source

- repeater

- sink

- isolate

Regular Equivalence (cont'd)

- Based solely on the social roles of neighbors
- Interested in
- Which nodes fall in which social roles?
- How do social roles relate to each other?
- Hard partitioning of the graph into social roles
- A given graph can have more than one valid regular equivalence set
- Exact regular equivalences can be rare in large graphs

Regular Equivalence: Algorithms

- Many algorithms exist here
- Maximal Regular coloration [Everett \& Borgatti, 1997] - a polynomial time alg
- Basic notion
- Profile each node's neighborhood by the presence of nodes of other "types"
- Nodes are regularly equivalent to the extent that they have similar "types" of other nodes at similar distances in their neighborhoods

Equivalences

Stochastic Equivalence

- [Holland, et al. 1983; Wasserman \& Anderson, 1987]
- Two nodes are stochastically equivalent if they are "exchangeable" w.r.t. a probability distribution
- Similar to structural equivalence but probabilistic

Stochastic Equivalence: Algorithms

- Many algorithms exist here
- Most recent approaches are generative [Airoldi, et al 2008]
- Some choice points
- Single [Kemp, et al 2006] vs. mixed-membership [Koutsourelakis \& EliassiRad, 2008] equivalences (a.k.a. "positions")
- Parametric vs. non-parametric models

Roadmap

- Node Roles
- What are roles
- Roles and communities

- Roles and equivalences (from sociology)
- Roles (from data mining)
- Summary
- Node Proximity

RolX: Role eXtraction

- Introduced by Henderson et al. KDD 2012
- Automatically extracts the underlying roles in a network
- No prior knowledge required
- Determines the number of roles automatically
- Assigns a mixed-membership of roles to each node
- Scales linearly on the number of edges

RolX: Flowchart

RolX: Flowchart

Recursive Feature Extraction

- ReFeX [Henderson, et al. 2011a] turns network connectivity into recursive structural features

- Neighborhood features: What is your connectivity pattern?
- Recursive Features: To what kinds of nodes are you connected?

Role Extraction

Input

Role Extraction: Feature Grouping

- Soft clustering in the structural feature space
- Each node has a mixed-membership across roles
- Generate a rank r approximation of $\mathrm{V} \approx \mathrm{GF}$

- RolX uses NMF for feature grouping
- Computationally efficient

$$
\operatorname{argmin}_{-G, F}\|V-G F\|_{\text {fro }}, \text { s.t. } G \geq 0, F \geq 0
$$

- Non-negative factors simplify interpretation of roles and memberships

Role Extraction: Model Selection

- Roles summarize behavior
- Or, they compress the feature matrix, V
- Use MDL to select the model size r that results in the best compression
- L: description length
- M: \# of bits required to describe the model
- E: cost of describing the reconstruction errors in V - GF
- Minimize L = M + E
- To compress high-precision floating point values, RolX combines Llyod-Max quantization with
$M=\bar{b} r(n+f)$ Huffman codes
- Errors in V-GF are not distributed normally, RolX uses KL divergence to compute E

$$
E=\sum_{i, j}\left(V_{i, j} \log \frac{V_{i, j}}{(G F)_{i, j}}-V_{i, j}+(G F)_{i, j}\right)
$$

Role Extraction

Input

Experiments on Role Discovery

- Role transfer
- Role sense-making
- Role query
- Role mixed-memberships

Details in Henderson et al. KDD 2012

Role Transfer

- Question: How can we use labels from an external source to predict labels on a network with no labels?

- Conjecture: Nodes with similar roles are likely to have similar labels

Role Transfer = RolX + SL

Data for Role Transfer

	IP-A1	IP-A2	IP-A3	IP-A4	IP-B
\# Nodes	81,450	57,415	154,103	206,704	181,267
\% labeled	36.7%	28.1%	20.1%	32.9%	15.3%
\# Links	968,138	432,797	$1,266,341$	$1,756,082$	$1,945,215$
(\# unique)	206,112	137,822	358,851	465,869	397,925
Class Distribu- tion					

Role Transfer Results

Roles generalize across disjoint networks \& enable prediction without re-learning

Model Selection

RolX selects high accuracy model sizes

Model Selection (continued)

Classification accuracy is highest when RolX selection criterion is minimized

Role Space

> IP trace classes are well-separated in the RolX role space with as few as 3 roles

Applications \times Roles

Automatically Discovered Roles

Network Science Co-authorship Graph
[Newman 2006]

Role Affinity Heat Map

Making Sense of Roles

Making Sense of Roles

GLRD: Guided Learning for Role Discovery

- Introduced by Sean Gilpin et al.
- RolX is unsupervised
- What if we had guidance on roles?
- Guidance as in weak supervision encoded as constraints
- Types of guidance
- Sparse roles
- Diverse roles
- Alternative roles, given a set of existing roles

GLRD

GLRD

GLRD

ReFeX

It's Who You Know: Graph Mining Using
Recursive Structural Features
In KDD 2011

RolX: Structural Role Extraction \& Mining in Large Graphs In KDD 2012.

Adding Constraints

Role assignment vector

 explanation

GLRD Framework

- Constraints on columns of G (i.e., role assignments) or rows of F (i.e. role definitions) are convex functions

$$
\begin{array}{ll}
\underset{\mathbf{G}, \mathbf{F}}{\operatorname{minimize}} & \|\mathbf{V}-\mathbf{G F}\|_{2} \\
\text { subject to } & g_{i}(\mathbf{G}) \leq d_{G i}, i=1, \ldots, t_{G} \\
& f_{i}(\mathbf{F}) \leq d_{F i}, i=1, \ldots, t_{F}
\end{array}
$$

where g_{i} and f_{i} are convex functions.

- Use an alternative least squares (ALS) formulation
- Do not alternate between solving for the entire G and F
- Solve for one column of G or one row of F at a time
- This is okay since we have convex constraints

Guidance Overview

Guidance Type	Effect of increasing guidance	
	Reduces the number of nodes with minority memberships in roles	Decreases likelihood that features with small explanatory benefit are included
Diversity	Limits the amount of allowable overlap in assignments	Roles must be explained with completely different sets of features
Alternative	Decreases the allowable similarity between the two sets of role assignments	Ensures that role definitions are very dissimilar between the two sets of role assignments

Sparsity

$\operatorname{argmin} \quad\|\mathbf{V}-\mathbf{G F}\|_{2}$
 \mathbf{G}, \mathbf{F}

subject to: $\quad \mathbf{G} \geq 0, \mathbf{F} \geq 0$
$\forall i \quad\left\|\mathbf{G}_{\bullet \mathbf{i}}\right\|_{1} \leq \epsilon_{G}$
$\forall i \quad\left\|\mathbf{F}_{\mathbf{i} \bullet}\right\|_{1} \leq \epsilon_{F}$
where ϵ_{G} and ϵ_{F} define upperbounds for the sparsity constraints (amount of allowable density).

Diversity

Goal: Find role assignments or definitions that are very different from each other

$$
\underset{\mathbf{G}, \mathbf{F}}{\operatorname{argmin}} \quad\|\mathbf{V}-\mathbf{G F}\|_{2}
$$

subject to: $\quad \mathbf{G} \geq 0, \mathbf{F} \geq 0$

$\forall i, j \quad \mathbf{G}_{\bullet i}^{T} \mathbf{G}_{\bullet j} \leq \epsilon_{G} \quad i \neq j$
$\forall i, j \quad \mathbf{F}_{i \bullet} \mathbf{F}_{j \bullet}^{T} \leq \epsilon_{F} \quad i \neq j$
where ϵ_{G} and ϵ_{F} define upperbounds on how angularly similar role assignments and role definitions can be to each other.

Diverse Roles and Sparse Roles

- Question: Can diversity and sparsity constraints create better role definitions?
- Conjecture: Better role definitions will better facilitate other problems such as identity resolution across graphs
- Experiment: Compare graph mining results using various methods for role discovery

Network	$\|\mathbf{V}\|$	$\|\mathbf{E}\|$	\mathbf{k}	$\|\mathbf{L C C}\|$	\#CC
VLDB	1,306	3,224	4.94	769	112
SIGMOD	1,545	4,191	5.43	1,092	116
CIKM	2,367	4,388	3.71	890	361
SIGKDD	1,529	3,158	4.13	743	189
ICDM	1,651	2,883	3.49	458	281
SDM	915	1,501	3.28	243	165

DBLP Co-authorship Networks from 2005-2009

Identity Resolution across Networks

Alternative Roles

- Question: Do alternative sets of roles exist in graphs and can they be discovered?

Modeling Dynamic Graphs with Roles

- Introduced by Rossi et al. WSDM 2013

1. Identify dynamic patterns in node behavior

2. Predict future structural changes

3. Detect unusual transitions in behavior

Dynamic Behavioral Mixed-Membership (DBMM) Model

- Scalable for big graphs
- Easily parallelizable
- Non-parametric \& data-driven
- Flexible and interpretable

$F \in \mathbb{R}^{r \times f}$
L (feature list)
$\downarrow G_{1} \in \mathbb{R}^{\text {node } \times \text { role }}$

Feature
Extraction

Role
Estimation
$G_{3} \in \mathbb{R}^{\text {node } \times \text { role }}$

1. Compute set of features
2. Estimate the features on each snapshot graph
3. Learn roles from features using NMF, number of roles selected via MDL
4. Extract roles from each feature matrix over time
5. Use NMF to estimate transition model

Predicting Structural Behavior

Given G_{t-1} and G_{t} find a transition

Twitter model T that minimizes the functional:

$$
f\left(\mathbf{G}_{t}, \mathbf{G}_{t-1}\right)=\frac{1}{2}\left\|\mathbf{G}_{t}-\mathbf{G}_{t-1} \mathbf{T}\right\|_{F}^{2}
$$

All models predict G_{t+1} using G_{t} as

$$
\mathrm{G}_{\mathrm{t}+1}^{\prime}=\mathrm{G}_{\mathrm{t}} \mathrm{~T}
$$

Summary model: Weight training examples from k previous time-steps Baseline models: Predict future role based on (1) previous role or (2) average role distribution

DBMM is more accurate at predicting future behavior than baselines.

Anomalous Structural Transitions

Problem: detect nodes with unusual structural transitions

Anomaly score:

1. Estimate transition model T for v
2. Use it to predict v 's memberships
3. Take the difference from actual

Inject anomalies into synthetic data:
Detected 88.5% over 200 repeated trials

DBMM model finds nodes that are anomalous for only short time-periods

Node Anomaly 2

Node Anomaly 4

Node Anomaly 5

SDM'14 Tutorial
D. Koutra \& T. Eliassi-Rad \& C. Faloutsos

Dynamic Network Analysis with Roles

Role transition matrices

SDM'14 Tutorial

Role proportions over time

Homogeneous roles

Abrupt transition

Periodic, similar roles

> D. Koutra \& T. Eliassi-Rad \& C. Faloutsos

Roles Across Relations

- Role Discovery in Multi-Relational Graphs [Sean Gilpin, et al. under review]

A Pattern from the Core Tensor of the $110^{\text {th }}$ Congress Co-sponsorship Graph

Name	Party	Exp
Hall, Ralph	R	16
Rodgers, Cathy	R	2
Myrick, Sue	R	12
Issa, Darrell	R	6
Drake, Thelma	R	2
Kuhl, Randy	R	2
Poe, Ted	R	2
Boozman, John	R	6
Conaway, Michael	R	2
Wamp, Zach	R	12

E-groups

Using Roles to Minimize Dissemination on Graphs

- Learn to predict which k edges to cut to minimize dissemination on an unseen graph
- [Long T. Le, TER, Hanghang Tong. under review]

NetMelt on Yahoo! IM
[Tong et al. CIKM'12]

RoleLearn λ on Yahoo! IM

$\lambda_{1}-\lambda_{2}$ is Small (Especially in Social Graphs)

Our new problem formulation:
Learn to predict which edges to cut.

Yahoo! IM (\% Drop in λ vs. Runtime)

Roadmap

- Node Roles
- What are roles
- Roles and communities

- Roles and equivalences (from sociology)
- Roles (from data mining)
- Summary
- Node Proximity
- Summary

Summary

- Roles
- Structural behavior ("function") of nodes
- Complementary to communities
- Previous work mostly in sociology under equivalences
- Recent graph mining work produces mixedmembership roles, is fully automatic and scalable
- Can be used for many tasks: transfer learning, re-identification, anomaly detection, etc
- Extensions: including guidance, modeling dynamic networks, etc

Roles: Regular Equivalence vs. Role Discovery

Role Discovery
Regular Equivalence

Mixed-membership over roles	\checkmark	
Automatically selects the best model	\checkmark	
Can incorporate arbitrary features	\checkmark	
Uses structural features	\checkmark	
Uses structure	\checkmark	$?$
Generalizes across disjoint networks (longitudinal \& cross-sectional)	\checkmark	85
Scalable (linear on \# of edges)	\checkmark	8
Guidance	D. Koutra \& T. Eliassi-Rad \& C. Faloutsos	

Acknowledgement

- LLNL: Brian Gallagher, Keith Henderson
- CCNY: Hanghang Tong
- Google: Sugato Basu
- SUNY Stony Brook: Leman Akoglu
- CMU: Danai Koutra
- UC Berkeley: Lei Li
- UC Davis: Ian Davidson, Sean Gilpin
- Rutgers: Long Le

Thanks to: LLNL, NSF, IARPA, DARPA, DTRA.

Papers at http://eliassi.org/pubs.html

- Long T. Le, Tina Eliassi-Rad, Hanghang Tong: Learning to minimize dissemination on large graphs. under review, 2014.
- Sean Gilpin, Tom Kuo, Tina Eliassi-Rad, Ian Davidson: Roles across relations: Role discovery in multi-relational graphs. under review, 2014.
- Michele Berlingerio, Danai Koutra, Tina Eliassi-Rad, Christos Faloutsos: Network similarity via multiple social theories. ASONAM 2013: 1439-1440.
- Sean Gilpin, Tina Eliassi-Rad, Ian Davidson: Guided learning for role discovery (GLRD): Framework, algorithms, and applications. KDD 2013: 113-121.
- Ryan A. Rossi, Brian Gallagher, Jennifer Neville, Keith Henderson: Modeling dynamic behavior in large evolving graphs. WSDM 2013: 667-676. http://www.ryanrossi.com/papers/wsdm13-dbmm.pdf
- Hanghang Tong, B. Aditya Prakash, Tina Eliassi-Rad, Michalis Faloutsos, Christos Faloutsos: Gelling, and melting, large graphs by edge manipulation. CIKM 2012: 245-254.
- Keith Henderson, Brian Gallagher, Tina Eliassi-Rad, Hanghang Tong, Sugato Basu, Leman Akoglu, Danai Koutra, Christos Faloutsos, Lei Li: RolX: Structural role extraction \& mining in large graphs. KDD 2012: 1231-1239.
- Ryan A. Rossi, Brian Gallagher, Jennifer Neville, Keith Henderson: Role-dynamics: fast mining of large dynamic networks. WWW (Companion Volume) 2012: 997-1006.
- Keith Henderson, Brian Gallagher, Lei Li, Leman Akoglu, Tina Eliassi-Rad, Hanghang Tong, Christos Faloutsos: It's who you know: Graph mining using recursive structural features. KDD 2011: 663-671.

References

Deterministic Equivalences

- S. Boorman, H.C. White: Social Structure from Multiple Networks: II. Role Structures. American Journal of Sociology, 81:1384-1446, 1976.
- S.P. Borgatti, M.G. Everett: Notions of Positions in Social Network Analysis. In P. V. Marsden (Ed.): Sociological Methodology, 1992:1-35.
- S.P. Borgatti, M.G. Everett, L. Freeman: UCINET IV, 1992.
- S.P. Borgatti, M.G. Everett, Regular Blockmodels of Multiway, Multimode Matrices. Social Networks, 14:91-120, 1992.
- R. Breiger, S. Boorman, P. Arabie: An Algorithm for Clustering Relational Data with Applications to Social Network Analysis and Comparison with Multidimensional Scaling. Journal of Mathematical Psychology, 12:328-383, 1975.
- R.S. Burt: Positions in Networks. Social Forces, 55:93-122, 1976.

References

- P. DiMaggio: Structural Analysis of Organizational Fields: A Blockmodel Approach. Research in Organizational Behavior, 8:335-70, 1986.
- P. Doreian, V. Batagelj, A. Ferligoj: Generalized Blockmodeling. Cambridge University Press, 2005.
- M.G. Everett, S. P. Borgatti: Regular Equivalence: General Theory. Journal of Mathematical Sociology, 19(1):29-52, 1994.
- K. Faust, A.K. Romney: Does Structure Find Structure? A critique of Burt's Use of Distance as a Measure of Structural Equivalence. Social Networks, 7:77-103, 1985.
- K. Faust, S. Wasserman: Blockmodels: Interpretation and Evaluation. Social Networks, 14:5-61. 1992.
- R.A. Hanneman, M. Riddle: Introduction to Social Network Methods. University of California, Riverside, 2005.

References

- F. Lorrain, H.C. White: Structural Equivalence of Individuals in Social Networks. Journal of Mathematical Sociology, 1:49-80, 1971.
- L.D. Sailer: Structural Equivalence: Meaning and Definition, Computation, and Applications. Social Networks, 1:73-90, 1978.
- M.K. Sparrow: A Linear Algorithm for Computing Automorphic Equivalence Classes: The Numerical Signatures Approach. Social Networks, 15:151-170, 1993.
- S. Wasserman, K. Faust: Social Network Analysis: Methods and Applications. Cambridge University Press, 1994.
- H.C. White, S. A. Boorman, R. L. Breiger: Social Structure from Multiple Networks I. Blockmodels of Roles and Positions. American Journal of Sociology, 81:730-780, 1976.
- D.R. White, K. Reitz: Graph and Semi-Group Homomorphism on Networks and Relations. Social Networks, 5:143-234, 1983.

References

Stochastic blockmodels

- E.M. Airoldi, D.M. Blei, S.E. Fienberg, E.P. Xing: Mixed Membership Stochastic Blockmodels. Journal of Machine Learning Research, 9:1981-2014, 2008.
- P.W. Holland, K.B. Laskey, S. Leinhardt: Stochastic Blockmodels: Some First Steps. Social Networks, 5:109-137, 1983.
- C. Kemp, J.B. Tenenbaum, T.L. Griffiths, T. Yamada, N. Ueda: Learning Systems of Concepts with an Infinite Relational Model. AAAI 2006.
- P.S. Koutsourelakis, T. Eliassi-Rad: Finding Mixed-Memberships in Social Networks. AAAI Spring Symposium on Social Information Processing, Stanford, CA, 2008.
- K. Nowicki ,T. Snijders: Estimation and Prediction for Stochastic Blockstructures, Journal of the American Statistical Association, 96:1077-1087, 2001.
- Z. Xu, V. Tresp, K. Yu, H.-P. Kriegel: Infinite Hidden Relational Models. UAI 2006.
- S. Wasserman, C. Anderson: Stochastic a Posteriori Blockmodels: Construction and Assessment, Social Networks, 9:1-36, 1987.

References

Role Discovery

- K. Henderson, B. Gallagher, L. Li, L. Akoglu, T. Eliassi-Rad, H. Tong, C. Faloutsos: It's Who Your Know: Graph Mining Using Recursive Structural Features. KDD 2011: 663-671.
- R. Jin, V. E. Lee, H. Hong: Axiomatic ranking of network role similarity. KDD 2011: 922-930.
- K. Henderson, B. Gallagher, T. Eliassi-Rad, H. Tong, S. Basu, L. Akoglu, D. Koutra, C. Faloutsos, L. Li: RolX: Structural role extraction \& mining in large graphs. KDD 2012: 1231-1239.
- R. A. Rossi, B. Gallagher, J. Neville, K. Henderson: Modeling dynamic behavior in large evolving graphs. WSDM 2013: 667-676.
- S. Gilpin, T. Eliassi-Rad, I. Davidson: Guided Learning for Role Discovery (GLRD): Framework, algorithms, and applications. KDD 2013.

References

Community Discovery

- A. Clauset, M.E.J. Newman, C. Moore: Finding Community Structure in Very Large Networks. Phys. Rev. E., 70:066111, 2004.
- M.E.J. Newman: Finding Community Structure in Networks Using the Eigenvectors of Matrices. Phys. Rev. E., 74:036104, 2006.
- Propositionalisation
- A.J. Knobbe, M. de Haas, A. Siebes: Propositionalisation and Aggregates. PKDD 2001: 277-288.
- M.-A. Krogel, S. Rawles, F. Zelezny, P.A. Flach, N. Lavrac, S. Wrobel: Comparative Evaluation of Approaches to Propositionalization. ILP 2003: 197-214.
- J. Neville, D. Jensen, B. Gallagher: Simple Estimators for Relational Bayesian Classifiers. ICDM 2003: 609-612.

Next

